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A computational algorithm based on the theory of ill-posed problems is proposed for evaluating filtration pa-
rameters of a layered bed using the results of nonstationary hydrodynamic investigations of vertical wells.

Methods for determining the filtration parameters of a bed from the results of nonstationary hydrodynamic in-
vestigations of wells are widely employed in practice. They are based on studying unsteady processes of the pressure
redistribution after a well is started or stopped. In the current work, consideration is given to the problem of determin-
ing filtration parameters of the layered bed from the results of nonstationary hydrodynamic investigations of wells
using regularization methods. After a producing well is closed, an unsteady liquid inflow from the seams to the open-
ing persists for some time so that pressure is recovered. The duration and character of the inflow depend on the pres-
sure redistribution and filtration characteristics of each seam. Therefore, the recording of the curve of the decrease in
the discharge of each seam as a result of the pressure recovery provides information needed for estimating filtration
properties of the seam [1, 2].

The problem of determining the hydraulic conductivity for the layered bed is formulated as follows: find σ =
(σ1, ..., σ2n−1) when the filtration process is described by the system of equations in the multiply connected region D
with boundary ∂D = G + Γ
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with the initial and boundary conditions

 ∫ 
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 ds = qk (t) ,   
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Γ

 = 0 ,   pkG
 = pk0 ,   pk (x, y, 0) = ϕk ,   k = 1, 2, ..., n , (2)

where Lk pk = −div (σ2k−1 grad pk), k = 1, 2, ..., n; ωk = σ2k
 ⁄ H2k

2 , k = 1, 2, ..., n − 1; c1 ≤ σk ≤ c2, k = 1, 2, ...,
2n − 1.

Additionally, bottom-hole pressures pk
(b)(t), measured on the well, are assumed to be known. This inverse

problem gives rise to an implicitly specified nonlinear operator

Journal of Engineering Physics and Thermophysics, Vol. 79, No. 3, 2006

aKazan State Technological University, 68 K. Marx Str., Kazan, 420015, Russia; bKazan Institute of Mechan-
ics and Mechanical Engineering, Kazan Scientific Center of the Russian Academy of Sciences, 2/31 Lobachevskii Str.,
Kazan, 420111, Russia; email: khairullin@mail.knc.ru. Translated from Inzhenerno-Fizicheskii Zhurnal, Vol. 79, No. 3,
pp. 128–130, May–June, 2006. Original article submitted June 17, 2004; revision submitted April 27, 2005.

1062-0125/06/7903-0553 2006 Springer Science+Business Media, Inc. 553
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∗
 , (3)

where
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 (t) dt ,   k = 1, 2, ..., n .

Generally, the quantity P∗ is not accurately known, i.e., NP∗ − Pδ
∗
N ≤ δ, where N...N is the norm in the Euclidean space

Rn. Problem (3) in the variational formulation reduces to the minimization of the smoothing functional

M
α

 (σ) = NAσ − Pδ
∗
N

2
 + αΩ (σ) ,

where Ω(σ) = ∑
i=1

2n−1

 (σk − σk
0)2, α = α(δ) is the regularization parameter that is in agreement with the measurement error.

Successive approximations of σm are constructed as follows: in the neighborhood of σm at a fixed value of
the regularization parameter α = αm, the nonlinear operator Aσ is represented as

Aσ = Aσm
 + Aσ

 ′  (σm) (σ − σm) + o (Nσ − σm
N) , (4)

where Aσ′ (σm)(σ − σm) is the Frechet differential, which is calculated using methods of perturbation theory. Functional
(4) is minimized using the Gauss–Newton procedure

M
αm (σ) = NAσm

 − Aσ
 ′  (σm) (σ − σm) − Pδ

∗
N

2
 + αmΩ (σ) .

An explicit expression of the Frechet functional can be obtained as in [3]:
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n
 ,
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n
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Here p~ i = (p~1
 i , p~2

 i , ..., p~n
 i ) is the solution of the corresponding related problem at the hydraulic coefficient σ~, δσ =

σ − σ~, and δωk = δσ2k/H2k
2 , k = 1, 2, ..., n − 1.

The direct and related problems are solved numerically using the finite-difference method with dimensions of
the well disregarded. It is viewed as a point source with a power equal to the flow rate of the actual well [4]. Calcu-
lations for the model problems showed that the rate of convergence of the iteration process is linked with the selection
of initial approximations of the hydraulic conductivities of weakly permeable seams and depends only slightly on in-
itial approximations of the hydraulic conductivities for highly permeable seams. The practical selection of an initial ap-
proximation of the hydraulic conductivities for weakly permeable seams is accomplished as follows. At different values
of the hydraulic conductivities of weakly permeable seams, 5–6 iterations are made, and thereafter, as approximate val-
ues of the hydraulic conductivities, such values are taken at which the residual as to bottom-hole pressures decreases
most rapidly. The regularization parameter was chosen on the basis of the residual criterion [5]. Errors in measuring
the discharges and bottom-hole pressures were 1–3%. When these errors were introduced in the initial data, the maxi-
mum error in determining the hydraulic conductivity in uniformity zones was 5%.

Further on, the proposed computational algorithm was used for interpreting the results of nonstationary hydro-
dynamic investigations obtained from well No. 1182 of the Romashkino field [6]. Well No. 1182 opens a bed with an
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impermeable roof and a bottom divided by a weakly permeable dam. Graphs of the decrease in the discharges as a
function of time (Fig. 1) and a curve of the variation in the bottom-hole pressure after the well is stopped were em-
ployed as the initial information. Filtration properties of the layered beds were evaluated assuming that, in the case of
insignificant differences in the depths of occurrence of the seams, the time variation of the bottom-hole pressure in
them is identical [1, 6]. Figure 2 presents calculated results, namely, the observed and calculated variations in the bot-
tom-hole pressures. The hydraulic conductivities, obtained by graphic-analytical methods, for highly permeable seams
are 0.245 and 0.365, respectively [6]. According to the proposed computational algorithm, these evaluations are 0.301
and 0.444.

NOTATION

Ai, component of a multidimensional quantity; Aσ, implicitly specified nonlinear operator; c1 and c2, positive
constants; D, filtration region; ds, element of length Γ; ∂D, boundary of the region; G, external boundary of the bed;
H2k−1, thickness of a highly permeable seam, m; H2k, thickness of a weakly permeable seam, m; Lk, operator of the
equation; Mα(σ), smoothing functional; o(⋅), symbol of the order; P∗ and Pδ

∗, multidimensional quantities; pk, pressure
in a highly permeable seam, MPa; pk0, bed pressure in a highly permeable seam, MPa; pk

(b)(t), bottom-hole pressure,
MPa; p~ i, solution of the ith related problem; qk(t), discharge of a well, m3/day; Rn, Euclidean space; T, time of the
field experiment, day; t, running time, day; x and y, Cartesian coordinates, m; α, regularization parameter; β∗, elastic
capacity coefficient, 1/MPa; Γ, circumference with a radius of 0.1 m; δ, measurement error; δσ, multidimensional
quantity; δσk, increment in the hydraulic conductivity; δωk, increment in the flow coefficient; ϕk, initial pressure dis-
tribution, MPa; σ, σm, and σ~, multidimensional quantities; σ2k−1, hydraulic conductivity of a highly permeable seam,
µm2⋅m/(MPa⋅sec); σ2k, hydraulic conductivity of a weakly permeable seam, µm2⋅m/(MPa⋅sec); σk

m, evaluations of the
hydraulic conductivity in the mth iteration, µm2⋅m/(MPa⋅sec); ωk, flow coefficient; ∆p, variation in the bottom-hole
pressure; Ω(σ), Tikhonov stabilizer; ∂ ⁄ ∂n, ∂ ⁄ ∂τ, and ∂ ⁄ ∂t, derivatives with respect to the normal, the tangent, and
time, respectively. Subscripts and superscripts: i, number of the related problem; k, seam number; m, iteration number;
n, number of highly permeable seams; b, bottom-hole.

REFERENCES

1. S. G. Kamenetskii, V. M. Kuz’min, and V. P. Stepanov, Oil-Field Studies of Beds [in Russian], Nedra, Mos-
cow (1974).

Fig. 1. Curves of variation in the persisting inflow in well No. 1182: 1) first
seam; 2) second seam. q, m3/day; t, day.

Fig. 2. Curves of variation in the bottom-hole pressures: 1) observed; 2) calcu-
lated for the first seam; 3) calculated for the second seam. ∆p, MPa; t, day.
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